Let’s Complete Each Other: EA and SOA

Yan Zhao, Ph.D
Director, Enterprise Architecture, CGI Federal

Content Summary

EA and SOA can complete each other via Enterprise Service Oriented Architecture (ESOA)

- Enterprise Architecture (EA) and its challenges
- How SOA can mitigates EA challenges
- Modeling EA in a service-oriented manner - ESOA
- Simplify ESOA modeling via horizontal and vertical partition - domain segmentation and service federation
Why We Need Enterprise Architecture

The Purpose of an Enterprise Architecture is to

- Have a blueprint and long-term guidance for an enterprise
- Facilitate decision making
- Support enterprise system modernization efforts
- Enhance collaboration and interoperation opportunities across enterprise
- Help to increase enterprise efficiency and effectiveness by streamline business processes and technology implementations across the enterprise
- Enable resource sharing and cost efficiency by identify common and sharable components and services
- EA for an enterprise vs. city planning for a city

The Challenges in EA Practice

Stake Holder Participation:
- Culture, people, organization
- Stove-piped vs. collaborative

Architecture Modeling:
- Coverage of depth and width
- Interrelationship among elements
- Approaches and methodologies

Architecture Maintenance & Program Management:
- Governance & life cycle mgmt
- Involve appropriate skills and resources for the efforts

Architecture Usage:
- Architecture acceptance
- Practical for usage
- Flexible framework for evolution
Where SOA Can Compensate

Stakeholder Participation:
- Clarification of service ownership
- Promote collaboration via common services and service infrastructure

Architecture Modeling:
- Business-centric capabilities in coarse grained
- Refinement with layered service components
- Well-defined & loosely-coupled

Architecture Maintenance & Program Management:
- Business-centric capabilities in coarse grained
- Refinement with layered service components
- Well-defined & loosely-coupled

Architecture Usage:
- Service infrastructure & service authoring tools become commodity
- Flexible framework for iterative development & deployment

Stakeholder participation

Enterprise Architecture
- Lack of Stakeholder Participation, due to
 - Traditional culture
 - Background of people
 - Organization structure
 - Competing priorities
 - Value proposition
- Lack of clear guidance for collaboration in
 - Target picture
 - Work direction
 - Roles and responsibilities
 - Effective approach and methods

SOA
- Increase Stakeholder participation by
 - Easier communication through service-oriented concept
 - Break organization boundaries via common services
 - Create common service roadmap across organizations
 - Reduce cost via shareable and reusable services
- Paint a Clear Picture for Collaboration by
 - Common service infrastructure
 - Identification of common services
 - Clarification of roles and responsibilities regarding to service providers and consumers
 - Self-sufficient service components with manageable scope in organizational level
Architecture Modeling

Enterprise Architecture
- **How to Model big picture**
 - Depth and breadth of architecture scope
 - Model matches audience
 - Right level of details
 - Not to jump into details too quickly and lost big picture
- **Produce meaningful models and conceptual abstraction in addition to data artifacts collection**
 - EA vs. engineering process
 - EA approaches and methodologies vs. EA framework
 - EA uniqueness for each enterprise
 - Insight and vision
 - Skilled architect for conceptual models

SOA
- **SOA can simplify big picture description**
 - Atomic service components
 - Loosely coupled, not hard-wired
 - Depth and breadth are covered by flexible layered components
- **SOA makes EA envisioning, planning, and modeling easier via**
 - Componentized and layered services
 - Loosely coupling
 - Iterative development
 - Matching different skills to different layers

Architecture Usage

Enterprise Architecture
- **Lack of EA product acceptance due to**
 - Stakeholder participation
 - Value proposition
 - The relevance of EA to specific projects
 - Gap analysis
- **Need flexible EA framework that can**
 - Connect the EA products and components together
 - Incorporate changes along the way
 - Be loosely coupled

SOA
- **SOA increase EA products acceptance by**
 - Better facilitate stakeholders’ participation
 - Enable better ROI estimate across full spectrum of SOA benefits in a composite way
 - Can help to fill the gaps between EA products and individual project by layered services
- **SOA enables a flexible framework by**
 - Componentized services
 - Components loosely coupling
 - Dynamic service plug-in and update
Architecture Maintenance
& Program Management

Enterprise Architecture

- Challenge in EA lifecycle management and governance
 - Uniqueness for each organization
 - Time and resource constraints
 - Effective tools
- Challenge in Resources
 - EA needs very special skill set
 - The bias from either technical or business perspectives
 - Need artistic ability with vision and insight to present reality via representational models
 - Lack of EA curricula in Universities

SOA

- SOA based lifecycle management and service governance are easier by
 - Building architecture maintenance into service lifecycle
 - Tools are developed rapidly for service lifecycle management and governance
- SOA can ease the EA resource pain by
 - Matching skills to manageable service scopes and layers
 - Ease the increasing demands for breadth in architecture competencies

An Enterprise SOA (ESOA) Model

ESOA Driver:
- Business Strategic Plan
- IT Strategic Plan

Service-Oriented Business Architecture:
- Business process model
- Business service model
- Business event model

Service-Oriented Technical Architecture:
- Layered service components
- Service infrastructure
- Data Services

Service Management and Governance Structure:
- Service life cycle management
- Service governance policies, structure, and process
What ESOA is About

SOA is an architectural style and modeling approach independent of its implementation technologies

- Emphasizes well-defined, loosely coupled, coarse-grained, business-centric, reusable and shared services, as well as associated infrastructure.
- Can be considered as a practical modeling approach for enterprise architecture (EA) development.
- Bridge EA with solution architecture and implementation by layered service components across business models, application models, and technology implementation.
- Bridge the business process model with service model providing a better mapping of the business requirements to IT capabilities.

What ESOA means to an Enterprise

Business Agility
- Business Transformation and Transition
- Collaborative Business Processes
- Business Services and Events

IT Flexibility
- On Demand Operation Environment
 - Federated Service Infrastructure
 - Service Development
 - Service Deployment
 - Service Operation

Composable Business Processes & Services
- (Business Modeling)

Composable IT Services
- (SOA)
ESOA Major Benefits

- **Business Agility**
 - Easier for business process improvement
 - Convenient for business operation monitoring
 - Convenient in manipulation and change of process flow via BPM tools

- **Reuse and leverage existing assets**
 - Business services can be constructed from existing components
 - Legacy systems can be accessed via web service interfaces

- **Common Infrastructure as commodity**
 - SOA infrastructure is becoming commodity by the use of COTS products
 - By enforcing standards, service components can be consolidated within a well-defined SOA infrastructure

- **Reduce development and maintenance cost**
 - Reuse of existing components will reduce development time and cost
 - Easier in incorporating new business requirements will reduce maintenance cost

- **Risk mitigation**
 - Reusing existing components reduces the risk in creating new ones
 - The commodity nature of infrastructure reduces risk in its support

Approaches and Methodologies for ESOA Practice

- **SOA Planning with Enterprise View**
 - Take advantage from Enterprise Architecture exercise
 - Create enterprise level ESOA framework include: service categorization, service infrastructure, and service owners and stake holders identification

- **Segmentation: service domain vertical partition based on (LoB)**
 - Associate with the segment enterprise architecture (proposed by Federal CIO Office for Federal EA development)
 - Separate entire enterprise service domain into segments based on the line of business services, and identify services for each LoB

- **Federation: service domain horizontal partition for service provision**
 - Associate with the federated enterprise architecture (i.e. for Federal EA development)
 - Implement and host the services based on organization autonomy
 - Implement federated service infrastructure to enable federated enterprise architecture implementation

- **Service Componentization**
 - Service component: self-contained with well-defined service interfaces
 - Service components are layered, and associated between business, application, & data
 - Components are reusable and services are sharable

- **Iterative and Incremental: top-down, bottom-up, and middle-out**
 - Adopt SOA for newly modernized environment and applications
 - Integrate with remaining legacy applications
 - Evolve legacy applications towards SOA
Enterprise Architecture Domains for Service Segmentation and Federation

Enterprise Architecture & Service Domain for Entire Enterprise

Organizational Domain
Organization A Unique Domain
Organization B Unique Domain
Enterprise-wide Architecture Framework

Segment 1
Segment 2
Segment 3
Segment 4
Service-Oriented Architecture
Service-Oriented Architecture
Service-Oriented Architecture
Service-Oriented Architecture
Federated Service Infrastructure
Federated ESOA Service Infrastructure

ESOA in Layers

* from CBDI Journal
ESOA Service Life Cycle

ESOA Drivers:
Business & IT goals, objectives, & requirements

- Service Architecture
- Service Development
- Service Deployment
- Service Operation

Design Time
Run Time

Governance

ESOA Service Life Cycle Components

<table>
<thead>
<tr>
<th>Service Architecture</th>
<th>Service Development</th>
<th>Service Deployment</th>
<th>Service Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Business process modeling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Business service modeling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Business event modeling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Layered technical service components modeling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Service infrastructure modeling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Data service modeling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Infrastructure implementation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Policy and control-points implementation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Services and workflow implementation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• User interface implementation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Service packaging</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Service change management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Services configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Service provision and orchestration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Identity and security management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Data integration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Event correlation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Service monitoring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Operation analysis and improvement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Business process management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Workload and policy management</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Where ESOA Applies to an Enterprise

1. Business Planning
2. IT Strategic Planning
3. Enterprise Architecture
4. Solution Development
5. Business Operation

Service-Oriented Architecture, Implementation, Deployment, and Operation

Estimate ROI for ESOA

Understand the full spectrum of SOA Benefits
- ROI for business agility
- ROI for asset reuse
- ROI for Common Infrastructure
- ROI from reduced development and integration cost
- ROI from maintenance cost
- ROI from risk mitigation

Assess ROI iteratively and compositely, as for SOA implementation
- Objectives for each service
- Cost for each service implementation
- Direct and indirect returns from the service
- Additional ROI obtained from reuse

Reference Matrix for ROI

IT Strategic Planning

Performance Measurement
Successful and Usable ESOA

ESOA Assessment and Maturity Models - Integration, Evolution, and Standardization

- Enterprise architecture maturity model
 - MIT, Center for Information Systems Research
 - OMB, Federal Government
 - Dept. of Commerce, Federal Government
- Service architecture maturity model
 - IBM Service Integration Maturity Model (SIIM) ?
- Service maturity model
 - Sonic (Progress Software), AmberPoint, BearingPoint, Systinet
 - HP, Oracle, EDS,

Implication of Architecture Maturity
The five maturity levels:

- **Level 0**: No architecture
- **Level 1**: Initial architecture
- **Level 2**: Under development architecture
- **Level 3**: Defined architecture
- **Level 4**: Managed architecture
- **Level 5**: Optimizing architecture
The ten maturity aspects:

- Business linkage
- Senior management involvement
- Operating unit participation
- Architecture process definition
- Architecture development
- Architecture communication
- Governance
- Program management
- Holistic enterprise architecture
- IT investment and procurement strategy

IBM SOA Maturity Model

Seven levels of service integration maturity Model for de-coupling and amount of flexibility achieved

1. Silo (data integration)
2. Integrated (application integration)
3. Componentized (functional integration)
4. Simple services (process integration)
5. Composite services (supply-chain integration)
6. Virtualized services (virtual infrastructure)
7. Dynamically reconfigurable services (eco-system integration)
SOA Service Maturity Model - Sonic, etc.

ESOA Maturity Model Standardization

ESOA Maturity Models - Evolution, and Standardization

- Maturity Domains
- Maturity Assessment Aspects and Success Measures
- Maturity Levels/ Stages
Conclusion

Following topics are discussed, which provides a reference for EA and SOA integration via ESOA:

- EA Benefits and Challenges
- Where SOA can compensate - ESOA model
- What ESOA is about
- What ESOA means to an enterprise
- ESOA major benefits
- Approach and Methodologies for ESOA practice
- Reference for best practices
- Assessment for a successful and usable ESOA - maturity models